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On the Continuity of the Magnetization and 
Energy in Ising Ferromagnets 
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We investigate the phase diagram of ferromagnetic Ising spin systems satisfying 
the G.H.S. inequality. We show that they cannot have a "normal" first-order 
phase transition as the temperature T is varied, i.e., one where the 
magnetization is discontinuous and there are three coexisting phases. Further- 
more, for n.n. interactions, discontinuity in the magnetization at 0 < T O ~< T~ 
implies an uncountable infinity of pure phases at To. 

KEY WORDS:  Continuity magnetization; Ising ferromagnets; Thouless 
effect; infinity of pure phases. 

1. I N T R O D U C T I O N  

In this note we prove some new results concerning the phase diagram and 
the critical point of ferromagnetic Ising models with pair interactions: 

ax=  _+1, x ~ Z  d 

/4= - Z J x y < ~ , - h Z ~  (1) 
x , U  X 

O ~ J , ~ y = J ( [ x -  y l ) ~ c / I x -  yl d+e , e > 0 ,  J ( 1 ) > 0  

While one might believe that everything interesting is already known 
about the behavior of such simple models, this is, unifortunately, still not 
the case. In particular at h = 0 or h --* 0 and reciprocal temperature fl larger 
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than the critical tic = (k~ To)-1, there are still many unanswered questions; 
cf. Refs. 1-4 for review and references. /~. is defined here by the equivalent 
statements: (a) the spontaneous magnetization m*(/3)=0 for /3 </~c and 
m*(/~) > 0  for/~ >/~c; (b) for h = 0  there is a unique Gibbs state for/~</3c 
and at least two pure phases (translational invariant clustering states) for 
/3>/~.  Clustering means (Croax ) -  ( O o ) ( ~ x )  ~ 0  as tx[--' oe (which, by 
F.K.G. inequalities,(2) is equivalent to clustering of all correlation functions 
for any Gibbs state of our system). 

We shall consider the following two questions for which we have some 
partial results: 

(1) Is the spontaneous magnetization continuous in /~ for /~>/~c? 
What about the continuity in /~ of other correlation functions like the 
(average) energy 52~ J0~(OoO~)? 

(2) How many phases coexist for/~>~/~? 

For rapidly decaying interactions one certainly expects (~ 4) continuity 
of m*(/~) which implies continuity of all correlations and the existence of 
one state at /?~ and two states for / ~ > ~ .  Nevertheless, the only exact 
results are the following: (a) for n.n. interactions continuity is known at all 
/3 for d = 2  ~1'2) and at/~c for d>~4. (S) 

(b) for long-range interactions in one dimension 

r 

JxY-]x_y]2 for ]x--y[r (2) 

there is a discontinuity in the magnetization at /~c. This is the Thouless 
effect(6 81 which has now been proved rigorously. ~ 

We also know that a discontinuity in m*(/3) at/3 o implies that the sus- 
ceptibility )~(/~,h), /~=/~h, must diverge as h ~ 0 ,  /~]'/~o .(2'3) In fact, if 
Z ( / 3o -6 ,~ )<~(~ ) ,  an integrable function of h" as / ~ 0  or if 
lim~;o 6)~(/~o-6, 0 + ) = 0 ,  then m*(/~) must be continuous at /~0 .(2) These 
results already rule out phase transitions in which rn*(/3) is discontinuous 
at/~0 yet fluctuations in all pure phases remain bounded as/3 ~ flo. 

Our new results, which are stated and proven in Section 2, go further 
in this direction. In particular they show for the Thouless transition that if 
the state coming from the high-temperature side is a pure phase then there 
must be at/~c an uncountable infinity of pure phases. While the latter can- 
not be ruled out entirely it seems more likely (8) that there are just two 
states at /3 c which is equivalent to the statement that the energy is con- 
tinuous there. (2) 

The results are discussed, with particular emphasis on the r 2 case, in 
Section 3 where we also present examples of similar models (spin-one Ising, 
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Potts) which, however, not satisfying GHS, can and do have normal first- 
order transitions: one where the magnetization is discontinuous but there 
are no critical fluctuations. 

2. RESULTS 

We shall use three translation invariant Gibbs states < > +, < >- ,  and 
< >0 which are obtained as thermodynamic limits of finite-volume Gibbs 
states in a region A ~ Z d with the following boundary conditions: 

+ b.c., all a x = + 1, x r A 

- b.c. ,  all ax = - 1 ,  x r A 

0 b.c., no coupling between the spins in A and in A c. 

The existence of the thermodynamic limit for these states follow from 
Griffiths' inequalities ~ for the <aA> +' .0 are monotone as A T Z  d, 
o-A = I]i~ A ~ A ~ A. 

It also follows from these inequalities that the correlation functions 
<O-A> +, <O-A> are continuous in/3 as /3 decreases to flo, while <aA> ~ is 
continuous as fl increases to flo. Moreover, if m*(/~)= <o-x> + = -<o-x>-  is 
continuous in/~ at/30 then the energy, ~x  Jo~<aoa~> +, and all correlation 
functions are continuous in /3 at fl0 .~1~ Continuity of the energy at /~o 
(which, since the free energy is convex in/~, holds for all values of / /except  
possibly on a countable set) implies that < > + and < >-  are the only pure 
phases a t  /~o, (10) in particular we have then <aA >0 = �89 ) + + <0-A > -- ) 
for all correlation functions. Finally, there is a unique phase at /~o if and 
only if m*(/~o) = 0. (11) 

In order to state our main result, let us define the Gibbs state < >(/~o) 
at inverse temperature/~o (without any superscripts) as 

<O-A >(f l0)  = l i m  <O-A > + (fl) 

The limits exist for all A's by monotonicity. (1'2~ 
Note that <O-A>=<aA> ~ for {AJ even since ( a A > + = < a A >  ~ for 

almost all/~ if {AI is even and <o-A> ~ is continuous as/~ increases to flo. In 
particular, < > = < >o= < > + ar any temperature where m* vanishes, i.e., 

Theorem 1. Let the magnetization be discontinuous at flo(>~/~c). 
Then if < >(~o) is clustering there are an uncountable number of pure 
phases (translational invariant clustering Gibbs states) at rio. 
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If we consider only nearest neighbour interactions in dimension d>~ 3 
so that the infrared bounds (j3) can be used, one can get a stronger version 
of Theorem 1: 

T h e o r e m  2. Let d~>3 and J x y = 0  if ] x - y l r  Then the states 
< > are clustering for all/3. Furthermore, a discontinuity in m*(/3) at some 
/3o(/>/7<) implies an uncountable number of pure phases and, ipso facto, a 
discontinuity in the energy. 

Proof  o f  Theorem #. Suppose that m*(/3) is distontinuous at/30, 

lira <ao)  + (/3) = <ao> <m*(/3o) = <ao> +(/30) (3) 
#T#o 

but that < > is clustering [< > = < >(/3)]. 
Let us now consider h r  in (1), and denote /3h by h. For /3=0, 

@x)(0 ,  h )=m(0 ,  h ) =  tanh h and since rn(/3, h) is jointly analytic in/3 and 
h (for h e 0 ) ,  O41 we can find, for any 7~ [0, 13 (by symmetry, the same is 
true for - 7 )  a curve/3,~(h) in the (/3, h) plane such that (see Fig. 1) 

m(/3~(h ), h) = 

d/3~( h ) _ 3rn/c~h 

dh am~a# 

/3 
i 

O 

Fig. 1. 

h_ 
Curves of constant  magnetization; <a 0 > < 72 < 71 < m*(/~0). 
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no problem occurs unless 8m/Sfi = 0 which, by inequalities, can only occur 
if J~y = 0 all x, y. 

When we let h ~ 0 along the curve fi/(h), all correlations 

(a~) (~ , (h) ,  h) - ,  (G~)'(t~, o) 

[in particular m(fiT(h), h ) ~  {ao)~(fl, 0)] for some Gibbs state ( )~ at 
zero external field and inverse temperature fl = lim~,~0 fl~,(h). (This follows 
from the D.L.R. equations.) 

Let us choose 7 between ( a o )  and m*(flo). By the above construction, 
we obtain a (translation invariant) Gibbs state at h = 0 and f l=  flo. We 
know that limh~o fl~(h) must be fi0 because m*(fl) is monotone increasing 
in fit9) 

We also know that 

fl,~(h) < flo for all h > 0 (4) 

because one deduces from F.K.G. inequalities that m(fl, h) is increasing if 
we increase h and vary fl along the line f i ( h ) = - ~ - l h + f l o  (with 
:~ = Y~x Jo~), (151 so if m(fl,(h), h) is to be held constant, fir(k)<~ ~(h). 

Now we use the G.H.S. inequality(~2): Write (cro; a x ) - ( a o a ~ ) -  

By G.H.S. 

<~o; ~x >(tUb), h) ~< <~o; ~x >(tUh), O) (5) 

(4) and (5) imply that 

0 ~ lira (ao; ~x)(fl~(h), h) 
h ~ 0  

= (ao; o-x) 7 

lim ffcro; O-x)(~, O) 
B t/~0 

= (ao; ax)  

which, by hypothesis, tends to zero as [xl -* oo ( ( )  is clustering). Thus, 
for any 7 between ( a o )  and m*(Bo) we have that (ao;ax)~'--*0 when 
[xf --* oo. This implies, again by F.K.G. inequalities (2) (which hold for any 
Gibbs state of the Ising model), that all truncated correlation functions 
cluster and therefore ( )1, is a pure phase. Since, by construction (ax)7  = 7 
we have obtained a continuum family of (different) ergodic Gibbs states at 
rio. 
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Proof of Theorem 2. Using the infrared bounds/~3) and correlation 
inequalities, Sokal (~6) has shown that 

C 

+ (/3) --</5 ix--- 5 

with C < oo independent of/5. This bound also holds for limiting states like 
( ) .  

3. D I S C U S S I O N  

(1) Theorems I and 2 hold for general models (higher spins, ~4 lat- 
tice field theory) satisfying the G.H.S. inequality. (12'19) 

(2) The content of the theorems is that systems satisfying the G.H.S. 
inequality cannot have a "normal" fist-order phase transition as /3 varies. 
Thus, in a situation where m* is discontinuous and the energy continuous 
at/50/>/5~ we must have continuity of the even correlations, ~1~ so 

lim (troOp) +(/~) = (oo~r:,) + (/50) ~> [m*(flo)] 2 (6) 

where the last inequality follows fore Griffith/l) Hence, for all A c Z d, 

l imlAl-1 y, [<axay>( /5) - [m*(f i ) ]2>~clAI  (7) 
~t~o  x, y e A  

where IAI is the number of sites in A and c > 0  is the discontinuity in 
[m*(fl)] 2 at/30. This is a stronger divergence, with IA[, than that obtained 
at regular critical points where the magnetization is continuous. For  "nor- 
mal" first-order transitions the right-hand side of (6) would remain boun- 
ded as A --* oo. 

(3) For the r -2 potential in d =  1, the only case for which we know 
that there is a discontinuity in m*(/5) at /3~. we have no uniform apriory 
bound on (aOOx)(/5) for/3</3c.  We are, therefore, left with several alter- 
natives: 

(a) Energy is continuous at/3c. This is what is expected (7'81 and Eqs. 
(6) and (7) then apply. 

(b) If the energy is discontinuous then ( ) ( /3c)  cannot be a super- 
position of the + and - states (1~ and we are left with these choices 

(bl) ( ) ( / 5 c )  is ergodic in which case Theorem 1 applies, or 

(b2) ( ) ( / 3 c )  is a superposition of some new kind of translation 
invariant (24) ergodic states which are neither + or - .  All states ( )~ could 
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then also be a superposition of such states which could be finite in number 
or there could still be an infinity of pure phases. In any case there cannot 
be exactly three pure phases at/~c since the third phase (in addition to the 
+ and - )  would necessarily be { > (otherwise the energy would be con- 
tinuous and there would be only two phases) and this would imply an 
infinity of phases. 

We shall not pursue these speculations about the "sex of angels" any 
further here. Suffice it to say that unless there are an uncountable number 
of pure phases then as/~Tflc, <cr0ax>(/~) has no uniform bound f ( x )  such 
that f ( x )  --, 0 as x ~ oo. This would explain the numerical observations. (8) 

Some Examples 

In this section we show, by means of examples, that one cannot prove 
too general statements about continuity of the energy and of the 
magnetization. Indeed we show that several models, having some 
inequalities in common with the Ising model, have quite a different 
behavior at their transition point: 

(1) Normal first-order transitions." Consider the following spin-1 
model: Sx = 0, _+ 1. The single-spin distribution is a6(S~)~ -~- (1 - -  a )  ~(Sx_ 1 ) 2  
and the Hamiltonian is given by (1) with, say Jxy nearest neighbor. This is 
equivalent to the Blume-Capel (17) model (except that in this latter model a 
would depend on /~). Then, for a close enough to 1, it has a first-order 
transition, with the magnetization and the energy discontinuous. At the 
transition temperature there are three pure phases < )0, ( > +, and < >-  
(see Ref. 18 for more details on this model). The G.H.S. inequality is not 
satisfied for a close to 1 (a > 2. 3, see Ref. 19). Actually, the states < >~ used 
in the proof of Theorem 1 can still be constructed but turn out to be con- 
vex superpositions of the < > + and ( >o states. 

Another example of this type is the q-state Potts model which, for q 
large, is known (2~ to have a first-order transition with q + 1 phases at the 
transition point. We notice that for q = 2 n, n an integer, this Ports model is 
equivalent to an Ising model with ferromagnetic many-body 
interactions, (21) which again does not satisfy the G.H.S. inequalities. 

(2) Magnetization discontinuous and energy continuous." As already 
mentioned, the 1/r 2 Ising model in one dimensions is expected to be an 
example of this type. A trivial (degenerate) example of this phenomenon is 
the one dimensional Ising model with nearest-neighbor interactions at 
/~ =- oo or T =  0:There m* = 0 for all T >  0 but m* = 1 for T =  0, so there is 
a jump in m* at T =  0. However, the energy given by tanh/~J is continuous, 
even C ~~ at the transition point ( T =  0). 
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(3) Magnetization continuous and energy discontinuous." Although it is 
not proven, one excepts that the energy in Ising lattice gauge theories in 
dimension d > 4  is discontinuous at some temperature. (22) Since in this 
model the magnetization is always zero it is trivially continuous. 

(4) Uncountably many pure phases: Our last example will show that 
the "pathological" alternative in Theorem 1 cannot be excluded on too 
general grounds. Consider a three-dimensional Ising model with no coupl- 
ing between planes perpendicular to the z direction but ordinary nearest 
neighbour ferromagnetic couplings in each plane. At low temperatures we 
can obviously obtain any sequence of positively or negatively magnetized 
planes (since they are uncorrelated). 

We construct uncountably many ergodic Gibbs states by distributing 
these + and - planes according to any ergodic measure on {-1 ,  +1} z 
(the set of Gibbs states of the one-dimensional Ising model, for fixed h and 
all possible temperatures, provides an uncountable family of such 
measures). Moreover, the energy and the magnetization here, being those 
of the two-dimensional Ising model, are perfectly continuous in /~. This 
example is adapted from a similar example due to Slawny, (23~ where all 
planes are coupled together, but through four-body interactions. 
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